
Package: lmForc (via r-universe)
August 31, 2024

Title Linear Model Forecasting

Version 1.0.0

Description Introduces in-sample, out-of-sample, pseudo out-of-sample,
and benchmark model forecast tests and a new class for working
with forecast data, Forecast.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>= 3.6.0)

Imports methods

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://nelson-n.r-universe.dev

RemoteUrl https://github.com/nelson-n/lmforc

RemoteRef HEAD

RemoteSha 711b5432345b138fcd454b6e092e1656ed897cab

Contents
autoreg_forc . 3
conditional_forc . 4
conditional_forc_general . 6
convert_byh . 7
convert_bytime . 9
forc . 10
forc,Forecast-method . 11
forc2df . 12
forc<- . 12
forc<-,Forecast-method . 13

1

2 Contents

Forecast . 14
Forecast-class . 15
future . 15
future,Forecast-method . 16
future<- . 17
future<-,Forecast-method . 17
historical_average_forc . 18
h_ahead . 19
h_ahead,Forecast-method . 20
h_ahead<- . 21
h_ahead<-,Forecast-method . 22
is_forc . 22
is_forc_general . 23
mae . 24
mae,Forecast-method . 25
mape . 26
mape,Forecast-method . 27
mse . 27
mse,Forecast-method . 28
oos_lag_forc . 29
oos_realized_forc . 30
oos_realized_forc_general . 32
oos_vintage_forc . 33
oos_vintage_forc_general . 35
origin . 37
origin,Forecast-method . 38
origin<- . 39
origin<-,Forecast-method . 39
performance_weighted_forc . 40
R2 . 42
R2,Forecast-method . 42
random_walk_forc . 43
realized . 44
realized,Forecast-method . 45
realized<- . 45
realized<-,Forecast-method . 46
rmse . 47
rmse,Forecast-method . 47
show,Forecast-method . 48
states_weighted_forc . 49
str,Forecast-method . 51
subset_bytime . 52
subset_forcs . 53
subset_identical . 54
transform_byh . 55
transform_bytime . 56
[,Forecast-method . 57

Index 59

autoreg_forc 3

autoreg_forc Autoregression forecast

Description

autoreg_forc takes a vector of realized values, an integer number of periods ahead to forecast, an
integer number of lags to include in the autoregressive model, a period to end the initial model esti-
mation and begin forecasting, an optional vector of time data associated with the realized values, and
an optional integer number of past periods to estimate the model over. An AR(ar_lags) autoregres-
sive model is originally estimated with realized values up to estimation_end minus the number of
periods specified in estimation_window. If estimation_window is left NULL then the autoregres-
sive model is estimated with all realized values up to estimation_end. The AR(ar_lags) model is
estimated by regressing the realized values on the same realized values that have been lagged by one
to ar_lags steps. The AR coefficients of this model are multiplied by lagged values and the present
period realized value to create a forecast for one period ahead. If h_ahead is greater than one, this
process of forecasting one period ahead is iteratively repeated so that the two period ahead forecast
conditions on the one period ahead forecasted value and so on until a h_ahead forecast is obtained.
This forecasting process is repeated for each period after estimation_end with AR model coef-
ficients updating as more information would have become available to the forecaster. Optionally
returns the coefficients used to create each forecast. Returns an autoregression forecast based on
information that would have been available at the forecast origin and replicates the forecasts that an
AR model would have produced in real-time.

Usage

autoreg_forc(
realized_vec,
h_ahead,
ar_lags,
estimation_end,
time_vec = NULL,
estimation_window = NULL,
return_betas = FALSE

)

Arguments

realized_vec Vector of realized values. This is the series that is being forecasted.

h_ahead Integer representing the number of periods ahead that is being forecasted.

ar_lags Integer representing the number of lags included in the AR model.

estimation_end Value of any class representing when to end the initial coefficient estimation
period and begin forecasting.

time_vec Vector of any class that is equal in length to the realized_vec vector.
estimation_window

Integer representing the number of past periods that the autoregressive model
should be estimated over in each period.

4 conditional_forc

return_betas Boolean, selects whether the coefficients used in each period to create the fore-
cast are returned. If TRUE, a data frame of betas is returned to the Global
Environment.

Value

Forecast object that contains the autoregression forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99, 1.31, 2.33)
data <- data.frame(date, y)

autoreg_forc(
realized_vec = data$y,
h_ahead = 1L,
ar_lags = 2L,
estimation_end = as.Date("2011-06-30"),
time_vec = data$date,
estimation_window = 4L,
return_betas = FALSE

)

autoreg_forc(
realized_vec = data$y,
h_ahead = 4L,
ar_lags = 2L,
estimation_end = 4L,
time_vec = NULL,
estimation_window = NULL

)

conditional_forc Linear model forecast conditioned on an input forecast

Description

conditional_forc takes a linear model call, a vector of time data associated with the linear model,
and a forecast for each covariate in the linear model. The linear model is estimated once over the
entire sample period and the coefficients are multiplied by the forecasts of each covariate. Returns
a forecast conditional on forecasts of each covariate. Used to create a forecast for the present period
or replicate a forecast made at a specific period in the past.

conditional_forc 5

Usage

conditional_forc(lm_call, time_vec, ...)

Arguments

lm_call Linear model call of the class lm.

time_vec Vector of any class that is equal in length to the data in lm_call.

... One or more forecasts of class Forecast, one forecast for each covariate in the
linear model.

Value

Forecast object that contains the conditional forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

x1_forecast <- Forecast(
origin = as.Date(c("2012-06-30", "2012-06-30", "2012-06-30", "2012-06-30")),
future = as.Date(c("2012-09-30", "2012-12-31", "2013-03-31", "2013-06-30")),
forecast = c(4.14, 4.04, 4.97, 5.12),
realized = NULL,
h_ahead = NULL

)

x2_forecast <- Forecast(
origin = as.Date(c("2012-06-30", "2012-06-30", "2012-06-30", "2012-06-30")),
future = as.Date(c("2012-09-30", "2012-12-31", "2013-03-31", "2013-06-30")),
forecast = c(6.01, 6.05, 6.55, 7.45),
realized = NULL,
h_ahead = NULL

)

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)
data <- data.frame(date, y, x1, x2)

conditional_forc(
lm_call = lm(y ~ x1 + x2, data),
time_vec = data$date,
x1_forecast, x2_forecast

)

6 conditional_forc_general

conditional_forc_general

General model forecast conditioned on input forecasts

Description

conditional_forc_general takes a model function, a prediction function, input data for estimat-
ing the model, and a vector of time data associated with the model. The model is estimated once
over the entire sample period and the model parameters are then combined with the input forecasts
to generate a forecast. Returns a forecast conditional on forecasts of each parameter. Used to create
a forecast for the present period or replicate a forecast made at a specific period in the past.

Usage

conditional_forc_general(
model_function,
prediction_function,
data,
time_vec,
...

)

Arguments

model_function Function that estimates a model using the data input.
prediction_function

Function that generates model predictions using model_function and data ar-
guments. Note* that the data argument passed to the prediction_function takes
the form of a data.frame with a number of columns equal to the number of input
vintage forecasts passed by the user. The prediction_function needs to be able
to take this input format and generate a prediction based on it.

data Input data for estimating the model.

time_vec Vector of any class that represents time and is equal in length to the length of
realized and data.

... Set of forecasts of class Forecast, one forecast for each parameter in the linear
model.

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

convert_byh 7

Examples

Estimation Data.
date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",

"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31",
"2013-03-31", "2013-06-30", "2013-09-30", "2013-12-31"))

y <- c(1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)
x1 <- c(8.22, 3.86, 4.27, 3.37, 5.88, 3.34, 2.92, 1.80, 3.30, 7.17, 3.22, 3.86,

4.27, 3.37, 5.88, 3.34)
x2 <- c(4.03, 2.46, 2.04, 2.44, 6.09, 2.91, 1.68, 2.91, 3.87, 1.63, 4.03, 2.46,

2.04, 2.44, 6.09, 2.91)
dataLogit <- data.frame(date, y, x1, x2)

Parameter Forecasts.
x1_forecastLogit <- Forecast(

origin = as.Date(c("2013-12-31", "2013-12-31", "2013-12-31", "2013-12-31")),
future = as.Date(c("2014-03-31", "2014-06-30", "2014-09-30", "2014-12-31")),
forecast = c(2.11, 6.11, 6.75, 4.30),
realized = NULL,
h_ahead = NULL

)

x2_forecastLogit <- Forecast(
origin = as.Date(c("2013-12-31", "2013-12-31", "2013-12-31", "2013-12-31")),
future = as.Date(c("2014-03-31", "2014-06-30", "2014-09-30", "2014-12-31")),
forecast = c(1.98, 7.44, 7.86, 5.98),
realized = NULL,
h_ahead = NULL

)

Forecasting Function.
conditional_forc_general(

model_function = function(data) {glm(y ~ x1 + x2, data = data, family = binomial)},
prediction_function = function(model_function, data) {

names(data) <- c("x1", "x2")
as.vector(predict(model_function, data, type = "response"))

},
data = dataLogit,
time_vec = dataLogit$date,
x1_forecastLogit, x2_forecastLogit

)

convert_byh Convert a list of time format Forecast objects to a h_ahead format
Forecast object.

8 convert_byh

Description

Given a list of forecasts with homogenous origin or future values, converts the forecasts to h_ahead
format based on the index passed to the index argument. Subsets all forecasts at the index value and
aggregates these forecasts into an h_ahead Forecast object with h_ahead equal to the value passed
to the h_aheads argument.

Usage

convert_byh(forcs, index, h_aheads)

Arguments

forcs List of Forecast objects with the same number of observations.

index Numeric or logical value or vector.

h_aheads Value or vector of h_ahead values that is equal in length to the index argument.

Value

Single Forecast object or list of Forecast objects in h_ahead format.

Examples

The following forecasts are in time format. Each forecast was made at a
different time and represents a forecast for a number of h_ahead periods
ahead.

forc1_t1 <- Forecast(
origin = as.Date(c("2010-02-17", "2010-02-17", "2010-02-17")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31")),
forecast = c(4.27, 3.77, 3.52),
realized = c(4.96, 4.17, 4.26),
h_ahead = NA

)

forc1_t2 <- Forecast(
origin = as.Date(c("2010-05-14", "2010-05-14", "2010-05-14")),
future = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31")),
forecast = c(3.36, 3.82, 4.22),
realized = c(4.17, 4.26, 4.99),
h_ahead = NA

)

forc1_t3 <- Forecast(
origin = as.Date(c("2010-07-22", "2010-07-22", "2010-07-22")),
future = as.Date(c("2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.78, 4.53, 5.03),
realized = c(4.26, 4.99, 5.33),
h_ahead = NA

)

forc1_t4 <- Forecast(

convert_bytime 9

origin = as.Date(c("2010-12-22", "2010-12-22", "2010-12-22")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30")),
forecast = c(5.45, 4.89, 5.78),
realized = c(4.99, 5.33, 5.21),
h_ahead = NA

)

forcs <- list(forc1_t1, forc1_t2, forc1_t3, forc1_t4)

convert_byh(forcs, index = 1L, h_aheads = 1)

convert_byh(forcs, index = 1:2, h_aheads = c(1, 2))

convert_bytime Convert a list of h_ahead format Forecast objects to a time format
Forecast object.

Description

Given a list of forecasts with different h_ahead values, converts the forecasts to time format based on
the time object passed to the values argument. Converts Forecast objects that have have homogenous
h_ahead values to Forecast objects with homogenous origin or future values.

Usage

convert_bytime(forcs, values, slot)

Arguments

forcs List of Forecast objects.

values Single time object or a vector of time objects.

slot Character representing whether the list of Forecasts will be converted to ho-
mogenous origin or future values. Must be either "origin" or "future".

Value

Single Forecast object or list of Forecast objects in time format.

Examples

The following forecasts are in h_ahead format. All forecasts come from the
same source (forc1) and have the same origin values. However, the forecasts
are for different periods ahead.

forc1_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31")),
forecast = c(4.27, 3.36, 4.78, 5.45),

10 forc

realized = c(4.96, 4.17, 4.26, 4.99),
h_ahead = 1

)

forc1_2h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(3.77, 3.82, 4.53, 4.89),
realized = c(4.17, 4.26, 4.99, 5.33),
h_ahead = 2

)

forc1_3h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-12-31", "2011-03-31", "2011-06-30", "2011-09-30")),
forecast = c(3.52, 4.22, 5.03, 5.78),
realized = c(4.26, 4.99, 5.33, 5.21),
h_ahead = 3

)

forcs <- list(forc1_1h, forc1_2h, forc1_3h)

convert_bytime(forcs, value = as.Date("2010-05-14"), slot = "origin")

convert_bytime(
forcs,
value = as.Date(c("2010-07-22", "2010-12-22")),
slot = "origin"

)

forc Get the forecast slot of a Forecast object

Description

forc takes a Forecast object and gets the forecast vector of the forecast.

Usage

forc(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of forecast values stored in the Forecast object.

forc,Forecast-method 11

Examples

Not run:

forc(Forecast)

End(Not run)

forc,Forecast-method Get the forecast slot of a Forecast object

Description

forc takes a Forecast object and gets the forecast vector of the forecast.

Usage

S4 method for signature 'Forecast'
forc(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of forecast values stored in the Forecast object.

Examples

Not run:

forc(Forecast)

End(Not run)

12 forc<-

forc2df Collect a Forecast object to a data frame

Description

forc2df takes one or more objects of the Forecast class and collects them into a data frame. Returns
a data frame with all of the information that was stored in the Forecast objects. If multiple forecasts
are being collected, all forecasts must have identical future and realized values.

Usage

forc2df(...)

Arguments

... One or multiple forecasts of the class Forecast.

Value

data.frame object that contains forecast information.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

Not run:

forc2df(x1_forecast)

forc2df(x1_forecast, x2_forecast)

End(Not run)

forc<- Set forecast slot of a Forecast object

Description

forc takes a Forecast object and sets the forecast vector of the forecast.

Usage

forc(Forecast) <- value

forc<-,Forecast-method 13

Arguments

Forecast Forecast object.
value Vector of values assigned to the forecast slot of the Forecast.

Value

Forecast object that contains the new forecast vector.

Examples

Not run:

forc(Forecast) <- c(2.45, 2.76, 3.31)

End(Not run)

forc<-,Forecast-method

Set forecast slot of a Forecast object

Description

forc takes a Forecast object and sets the forecast vector of the forecast.

Usage

S4 replacement method for signature 'Forecast'
forc(Forecast) <- value

Arguments

Forecast Forecast object.
value Vector of values assigned to the forecast slot of the Forecast.

Value

Forecast object that contains the new forecast vector.

Examples

Not run:

forc(Forecast) <- c(2.45, 2.76, 3.31)

End(Not run)

14 Forecast

Forecast Create an object of the Forecast class

Description

An S4 class for storing forecasts. An object of the Forecast class has equal length vectors that
contain the time the forecast was made, the future time being forecasted, the forecast, and realized
values if available. Optionally includes the number of periods ahead being forecasted.

Usage

Forecast(origin, future, forecast, realized = NULL, h_ahead = NULL)

Arguments

origin A vector of any class representing the time when the forecast was made.
future A vector of any class representing the time that is being forecasted, i.e. when

the forecast will be realized.
forecast A numeric vector of forecasts.
realized Optional numeric vector of realized values, i.e. the true value at the future time.
h_ahead Optional length-one object representing the number of periods ahead being fore-

casted.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

my_forecast <- Forecast(
origin = c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31"),
future = c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31"),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

origin(my_forecast) <- c("2010-04-01", "2010-07-01", "2010-10-01", "2011-01-01")
future(my_forecast) <- c("2012-04-01", "2012-07-01", "2012-10-01", "2013-01-01")
forc(my_forecast) <- c(8.87, 7.61, 7.56, 5.96)
realized(my_forecast) <- c(6.64, 6.10, 6.33, 6.67)
h_ahead(my_forecast) <- 8L

origin(my_forecast)
future(my_forecast)
forc(my_forecast)
realized(my_forecast)
h_ahead(my_forecast)

Forecast-class 15

Forecast-class S4 class for storing forecasts

Description

An S4 class for storing forecasts. An object of the Forecast class has equal length vectors that
contain the time the forecast was made, the future time being forecasted, the forecast, and realized
values if available. Optionally includes the number of periods ahead being forecasted.

Slots

origin A vector of any class representing the time when the forecast was made.

future A vector of any class representing the time that is being forecasted, i.e. when the forecast
will be realized.

forecast A numeric vector of forecasts.

realized Optional numeric vector of realized values, i.e. the true value at the future time.

h_ahead Optional length-one object representing the number of periods ahead being forecasted.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

future Get the future slot of a Forecast object

Description

future takes a Forecast object and gets the future vector of the forecast.

Usage

future(Forecast)

Arguments

Forecast object.

Value

Vector of future values stored in the Forecast object.

16 future,Forecast-method

Examples

Not run:

future(Forecast)

End(Not run)

future,Forecast-method

Get the future slot of a Forecast object

Description

future takes a Forecast object and gets the future vector of the forecast.

Usage

S4 method for signature 'Forecast'
future(Forecast)

Arguments

Forecast object.

Value

Vector of future values stored in the Forecast object.

Examples

Not run:

future(Forecast)

End(Not run)

future<- 17

future<- Set the future slot of a Forecast object

Description

future takes a Forecast object and sets the future vector of the forecast.

Usage

future(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the future slot of the Forecast.

Value

Forecast object that contains the new future vector.

Examples

Not run:

future(Forecast) <- c("2015-03-01", "2015-03-02", "2015-03-03")

End(Not run)

future<-,Forecast-method

Set future slot of a Forecast object

Description

future takes a Forecast object and sets the future vector of the forecast.

Usage

S4 replacement method for signature 'Forecast'
future(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the future slot of the Forecast.

18 historical_average_forc

Value

Forecast object that contains the new future vector.

Examples

Not run:

future(Forecast) <- c("2015-03-01", "2015-03-02", "2015-03-03")

End(Not run)

historical_average_forc

Historical average forecast

Description

historical_average_forc takes an average function, a vector of realized values, an integer num-
ber of periods ahead to forecast, a period to end the initial average estimation and begin forecasting,
an optional vector of time data associated with the realized values, and an optional integer number
of past periods to estimate the average over. The historical average is originally calculated with real-
ized values up to estimation_end minus the number of periods specified in estimation_window.
If estimation_window is left NULL then the historical average is calculated with all available re-
alized values up to estimation_end. In each period the historical average is set as the h_ahead
period ahead forecast. This process is iteratively repeated for each period after estimation_end
with the historical average updating in each period as more information would have become avail-
able to the forecaster. Returns a historical average forecast where the h_ahead period ahead forecast
is simply the historical average or rolling window average of the series being forecasted.

Usage

historical_average_forc(
avg_function,
realized_vec,
h_ahead,
estimation_end,
time_vec = NULL,
estimation_window = NULL

)

Arguments

avg_function Character, either "mean" or "median". Selects whether forecasts are made using
the historical mean or historical median of the series.

realized_vec Vector of realized values. This is the series that is being forecasted.

h_ahead 19

h_ahead Integer representing the number of periods ahead that is being forecasted.

estimation_end Value of any class representing when to end the initial average estimation period
and begin forecasting.

time_vec Vector of any class that is equal in length to the realized_vec vector.
estimation_window

Integer representing the number of past periods that the historical average should
be estimated over in each period.

Value

Forecast object that contains the historical average forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
data <- data.frame(date, y)

historical_average_forc(
avg_function = "mean",
realized_vec = data$y,
h_ahead = 2L,
estimation_end = as.Date("2011-03-31"),
time_vec = data$date,
estimation_window = 4L

)

historical_average_forc(
avg_function = "median",
realized_vec = data$y,
h_ahead = 4L,
estimation_end = 4L

)

h_ahead Get the h_ahead slot of a h_ahead object

Description

h_ahead takes a Forecast object and gets the h_ahead vector of the forecast.

20 h_ahead,Forecast-method

Usage

h_ahead(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of h_ahead values stored in the Forecast object.

Examples

Not run:

h_ahead(Forecast)

End(Not run)

h_ahead,Forecast-method

Get the h_ahead slot of a h_ahead object

Description

h_ahead takes a Forecast object and gets the h_ahead vector of the forecast.

Usage

S4 method for signature 'Forecast'
h_ahead(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of h_ahead values stored in the Forecast object.

h_ahead<- 21

Examples

Not run:

h_ahead(Forecast)

End(Not run)

h_ahead<- Set h_ahead slot of a Forecast object

Description

h_ahead takes a Forecast object and sets the h_ahead vector of the forecast.

Usage

h_ahead(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the h_ahead slot of the Forecast.

Value

Forecast object that contains the new h_ahead vector.

Examples

Not run:

h_ahead(Forecast) <- 4L

End(Not run)

22 is_forc

h_ahead<-,Forecast-method

Set h_ahead slot of a Forecast object

Description

h_ahead takes a Forecast object and sets the h_ahead vector of the forecast.

Usage

S4 replacement method for signature 'Forecast'
h_ahead(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the h_ahead slot of the Forecast.

Value

Forecast object that contains the new h_ahead vector.

Examples

Not run:

h_ahead(Forecast) <- 4L

End(Not run)

is_forc In-sample linear model forecast

Description

is_forc takes a linear model call and an optional vector of time data associated with the linear
model. The linear model is estimated once over the entire sample period and the coefficients are
multiplied by the realized values in each period of the sample. Returns an in-sample forecast con-
ditional on realized values.

Usage

is_forc(lm_call, time_vec = NULL)

is_forc_general 23

Arguments

lm_call Linear model call of the class lm.

time_vec Vector of any class that is equal in length to the data in lm_call.

Value

Forecast object that contains the in-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)
data <- data.frame(date, y, x1, x2)

is_forc(
lm_call = lm(y ~ x1 + x2, data),
time_vec = data$date

)

is_forc(
lm_call = lm(y ~ x1 + x2, data)

)

is_forc_general In-sample general model forecast

Description

is_forc_general takes a model function, a prediction function, input data for estimating the
model, realized values of the dependent variable, and an optional vector of time data associated
with the model. The model is estimated once over the entire sample period using the input data
and model function. Model parameters are then combined with the input data using the predic-
tion function to generate in-sample forecasts. Returns an in-sample forecast conditional on realized
values.

Usage

is_forc_general(model_function, prediction_function, data, realized, time_vec)

24 mae

Arguments

model_function Function that estimates a model using the data input.
prediction_function

Function that generates model predictions using model_function and data as
inputs.

data Input data for estimating the model.

realized Vector of realized values of the dependent variable equal in length to the data in
data.

time_vec Vector of any class that represents time and is equal in length to the length of
realized and data.

Value

Forecast object that contains the in-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1, 0, 0, 0, 1, 1, 0, 0, 0, 1)
x1 <- c(8.22, 3.86, 4.27, 3.37, 5.88, 3.34, 2.92, 1.80, 3.30, 7.17)
x2 <- c(4.03, 2.46, 2.04, 2.44, 6.09, 2.91, 1.68, 2.91, 3.87, 1.63)
dataLogit <- data.frame(date, y, x1, x2)

is_forc_general(
model_function = function(data) {glm(y ~ x1 + x2, data = data, family = binomial)},
prediction_function = function(model_function, data) {

as.vector(predict(model_function, data, type = "response"))
},
data = dataLogit,
realized = dataLogit$y,
time_vec = dataLogit$date

)

mae Calculate MAE of a Forecast object

Description

mae takes a Forecast object and returns the MAE of the forecast. MAE is calculated as: 1/length(forecast)
* sum(abs(forecast - realized))

mae,Forecast-method 25

Usage

mae(Forecast)

Arguments

Forecast Forecast object.

Value

MAE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

mae(my_forecast)

mae,Forecast-method Calculate MAE of a Forecast object

Description

mae takes a Forecast object and returns the MAE of the forecast. MAE is calculated as: 1/length(forecast)
* sum(abs(forecast - realized))

Usage

S4 method for signature 'Forecast'
mae(Forecast)

Arguments

Forecast Forecast object.

Value

MAE value.

26 mape

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

mae(my_forecast)

mape Calculate MAPE of a Forecast object

Description

mape takes a Forecast object and returns the MAPE of the forecast. MAPE is calculated as:
1/length(forecast) * sum(abs(realized - forecast) / realized)

Usage

mape(Forecast)

Arguments

Forecast Forecast object.

Value

MAPE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

mape(my_forecast)

mape,Forecast-method 27

mape,Forecast-method Calculate MAPE of a Forecast object

Description

mape takes a Forecast object and returns the MAPE of the forecast. MAPE is calculated as:
1/length(forecast) * sum(abs(realized - forecast) / realized)

Usage

S4 method for signature 'Forecast'
mape(Forecast)

Arguments

Forecast Forecast object.

Value

MAPE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

mape(my_forecast)

mse Calculate MSE of a Forecast object

Description

mse takes a Forecast object and returns the MSE of the forecast. MSE is calculated as: 1/length(forecast)
* sum((realized - forecast)^2)

Usage

mse(Forecast)

28 mse,Forecast-method

Arguments

Forecast Forecast object.

Value

MSE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

mse(my_forecast)

mse,Forecast-method Calculate MSE of a Forecast object

Description

mse takes a Forecast object and returns the MSE of the forecast. MSE is calculated as: 1/length(forecast)
* sum((realized - forecast)^2)

Usage

S4 method for signature 'Forecast'
mse(Forecast)

Arguments

Forecast Forecast object.

Value

MSE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

oos_lag_forc 29

)

mse(my_forecast)

oos_lag_forc Out-of-sample lagged linear model forecast conditioned on realized
values

Description

oos_lag_forc takes a linear model call, an integer number of periods ahead to forecast, a period to
end the initial coefficient estimation and begin forecasting, an optional vector of time data associated
with the linear model, and an optional integer number of past periods to estimate the linear model
over. Linear model data is lagged by h_ahead periods and the linear model is re-estimated with data
up to estimation_end minus the number of periods specified in estimation_window to create a
lagged linear model. If estimation_window is left NULL then the linear model is estimated with all
available data up to estimation_end. Coefficients are multiplied by present period realized values
of the covariates to create a forecast for h_ahead periods ahead. This process is iteratively repeated
for each period after estimation_end with coefficients updating in each period. Returns an out-
of-sample forecast conditional on realized values that would have been available at the forecast
origin. Optionally returns the coefficients used to create each forecast. Tests the out-of-sample
performance of a linear model had it been lagged and conditioned on available information.

Usage

oos_lag_forc(
lm_call,
h_ahead,
estimation_end,
time_vec = NULL,
estimation_window = NULL,
return_betas = FALSE

)

Arguments

lm_call Linear model call of the class lm.
h_ahead Integer representing the number of periods ahead that is being forecasted.
estimation_end Value of any class representing when to end the initial coefficient estimation

period and begin forecasting.
time_vec Vector of any class that is equal in length to the data in lm_call.
estimation_window

Integer representing the number of past periods that the linear model should be
estimated over in each period.

return_betas Boolean, selects whether the coefficients used in each period to create the fore-
cast are returned. If TRUE, a data frame of betas is returned to the Global
Environment.

30 oos_realized_forc

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)
data <- data.frame(date, y, x1, x2)

oos_lag_forc(
lm_call = lm(y ~ x1 + x2, data),
h_ahead = 2L,
estimation_end = as.Date("2011-03-31"),
time_vec = data$date,
estimation_window = NULL,
return_betas = FALSE

)

oos_lag_forc(
lm_call = lm(y ~ x1 + x2, data),
h_ahead = 2L,
estimation_end = 6L

)

oos_realized_forc Out-of-sample linear model forecast conditioned on realized values

Description

oos_realized_forc takes a linear model call, an integer number of periods ahead to forecast, a
period to end the initial coefficient estimation and begin forecasting, an optional vector of time
data associated with the linear model, and an optional integer number of past periods to estimate
the linear model over. The linear model is originally estimated with data up to estimation_end
minus the number of periods specified in estimation_window. If estimation_window is left NULL
then the linear model is estimated with all available data up to estimation_end. Coefficients are
multiplied by realized values of the covariates h_ahead periods ahead to create an h_ahead period
ahead forecast. This process is iteratively repeated for each period after estimation_end with
coefficients updating in each period. Returns an out-of-sample forecast conditional on realized
values that would not have been available at the forecast origin. Optionally returns the coefficients
used to create each forecast. Tests the out-of-sample performance of a linear model had it been
conditioned on perfect information.

oos_realized_forc 31

Usage

oos_realized_forc(
lm_call,
h_ahead,
estimation_end,
time_vec = NULL,
estimation_window = NULL,
return_betas = FALSE

)

Arguments

lm_call Linear model call of the class lm.

h_ahead Integer representing the number of periods ahead that is being forecasted.

estimation_end Value of any class representing when to end the initial coefficient estimation
period and begin forecasting.

time_vec Vector of any class that is equal in length to the data in lm_call.
estimation_window

Integer representing the number of past periods that the linear model should be
estimated over in each period.

return_betas Boolean, selects whether the coefficients used in each period to create the fore-
cast are returned. If TRUE, a data frame of betas is returned to the Global
Environment.

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)
data <- data.frame(date, y, x1, x2)

oos_realized_forc(
lm_call = lm(y ~ x1 + x2, data),
h_ahead = 2L,
estimation_end = as.Date("2011-03-31"),
time_vec = data$date,
estimation_window = NULL,
return_betas = FALSE

32 oos_realized_forc_general

)

oos_realized_forc_general

Out-of-sample general model forecast conditioned on realized values

Description

oos_realized_forc takes a model function, a prediction function, input data for estimating the
model, realized values of the dependent variable, an integer number of periods ahead to forecast,
a period to end the initial coefficient estimation and begin forecasting, a vector of time data as-
sociated with the model, and an optional integer number of past periods to estimate the model
over. The model is originally estimated using the input data and model function with data up to
estimation_end minus the the number of periods specified in estimation_window. If estimation_window
is left NULL then the model is estimated with all available data up to estimation_end. Model pa-
rameters are then combined with realized values of the input data h_ahead periods ahead to gen-
erate an h_ahead period ahead forecast. This process is iteratively repeated for each period after
estimation_end with model parameters updating in each period. Returns an out-of-sample fore-
cast conditional on realized values that would not have been available at the forecast origin. Tests
the out-of-sample performance of a model had it been conditioned on perfect information.

Usage

oos_realized_forc_general(
model_function,
prediction_function,
data,
realized,
h_ahead,
estimation_end,
time_vec,
estimation_window = NULL

)

Arguments

model_function Function that estimates a model using the data input.
prediction_function

Function that generates model predictions using model_function and data as
inputs.

data Input data for estimating the model.

realized Vector of realized values of the dependent variable equal in length to the data in
data.

h_ahead Integer representing the number of periods ahead that is being forecasted.

oos_vintage_forc 33

estimation_end Value of any class representing when to end the initial coefficient estimation
period and begin forecasting.

time_vec Vector of any class that represents time and is equal in length to the length of
realized and data.

estimation_window

Integer representing the number of past periods that the linear model should be
estimated over in each period.

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31",
"2013-03-31", "2013-06-30", "2013-09-30", "2013-12-31"))

y <- c(1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)
x1 <- c(8.22, 3.86, 4.27, 3.37, 5.88, 3.34, 2.92, 1.80, 3.30, 7.17, 3.22, 3.86,

4.27, 3.37, 5.88, 3.34)
x2 <- c(4.03, 2.46, 2.04, 2.44, 6.09, 2.91, 1.68, 2.91, 3.87, 1.63, 4.03, 2.46,

2.04, 2.44, 6.09, 2.91)
dataLogit <- data.frame(date, y, x1, x2)

forc <- oos_realized_forc_general(
model_function = function(data) {glm(y ~ x1 + x2, data = data, family = binomial)},
prediction_function = function(model_function, data) {

as.vector(predict(model_function, data, type = "response"))
},
data = dataLogit,
realized = dataLogit$y,
h_ahead = 2L,
estimation_end = as.Date("2012-06-30"),
time_vec = dataLogit$date,
estimation_window = NULL

)

oos_vintage_forc Out-of-sample linear model forecast conditioned on vintage forecasts

34 oos_vintage_forc

Description

oos_vintage_forc takes a linear model call, a vector of time data associated with the linear model,
a forecast for each covariate in the linear model, and an optional integer number of past periods to
estimate the linear model over. For each period in the vintage forecasts, coefficients are estimated
with data up to the current period minus the number of periods specified in estimation_window.
If estimation_window is left NULL then the linear model is estimated with all available data up
to the current period. Coefficients are then multiplied by vintage forecast values. Returns an out-
of-sample forecast conditional on vintage forecasts that would have been available at the forecast
origin. Optionally returns the coefficients used to create each forecast. Replicates the forecasts that
a linear model would have produced in real time.

Usage

oos_vintage_forc(
lm_call,
time_vec,
...,
estimation_window = NULL,
return_betas = FALSE

)

Arguments

lm_call Linear model call of the class lm.

time_vec Vector of any class that is equal in length to the data in lm_call.

... Set of forecasts of class Forecast, one forecast for each covariate in the linear
model.

estimation_window

Integer representing the number of past periods that the linear model should be
estimated over in each period.

return_betas Boolean, selects whether the coefficients used in each period to create the fore-
cast are returned. If TRUE, a data frame of betas is returned to the Global
Environment.

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)

oos_vintage_forc_general 35

x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)
data <- data.frame(date, y, x1, x2)

x1_forecast_vintage <- Forecast(
origin = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
future = as.Date(c("2011-09-30", "2011-12-31", "2012-03-31", "2012-06-30")),
forecast = c(6.30, 4.17, 5.30, 4.84),
realized = c(4.92, 5.80, 6.30, 4.17),
h_ahead = 4L

)

x2_forecast_vintage <- Forecast(
origin = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
future = as.Date(c("2011-09-30", "2011-12-31", "2012-03-31", "2012-06-30")),

forecast = c(7.32, 6.88, 6.82, 6.95),
realized = c(8.68, 9.91, 7.87, 6.63),
h_ahead = 4L

)

oos_vintage_forc(
lm_call = lm(y ~ x1 + x2, data),
time_vec = data$date,
x1_forecast_vintage, x2_forecast_vintage,
estimation_window = 4L,
return_betas = FALSE

)

oos_vintage_forc(
lm_call = lm(y ~ x1 + x2, data),
time_vec = data$date,
x1_forecast_vintage, x2_forecast_vintage

)

oos_vintage_forc_general

Out-of-sample general model forecast conditioned on vintage fore-
casts

Description

oos_vintage_forc_general takes a model function, a prediction function, input data for estimat-
ing the model, realized values of the dependent variable, a vector of time data associated with the
model, a forecast for each parameter in the model, and an optional integer number of past periods
to estimate the model over. For each period in the vintage forecasts, model parametes are estimated
with data up to the current period minus the number of periods specified in estimation_window.
If estimation_window is left NULL then the model is estimated with all available data up to the
current period. Model parameters are then combined with vintage forecast values to generate a
forecast. Returns an out-of-sample forecast conditional on vintage forecasts that would have been

36 oos_vintage_forc_general

available at the forecast origin. Replicates the forecasts that a conditional forecasting model would
have produced in real time.

Usage

oos_vintage_forc_general(
model_function,
prediction_function,
data,
realized,
time_vec,
...,
estimation_window = NULL

)

Arguments

model_function Function that estimates a model using the data input.
prediction_function

Function that generates model predictions using model_function and data ar-
guments. Note* that the data argument passed to the prediction_function takes
the form of a data.frame with a number of columns equal to the number of input
vintage forecasts passed by the user. The prediction_function needs to be able
to take this input format and generate a prediction based on it.

data Input data for estimating the model.

realized Vector of realized values of the dependent variable equal in length to the data in
data.

time_vec Vector of any class that represents time and is equal in length to the length of
realized and data.

... Set of forecasts of class Forecast, one forecast for each parameter in the linear
model.

estimation_window

Integer representing the number of past periods that the linear model should be
estimated over in each period.

Value

Forecast object that contains the out-of-sample forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

Estimation Data.
date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",

"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",

origin 37

"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31",
"2013-03-31", "2013-06-30", "2013-09-30", "2013-12-31"))

y <- c(1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)
x1 <- c(8.22, 3.86, 4.27, 3.37, 5.88, 3.34, 2.92, 1.80, 3.30, 7.17, 3.22, 3.86,

4.27, 3.37, 5.88, 3.34)
x2 <- c(4.03, 2.46, 2.04, 2.44, 6.09, 2.91, 1.68, 2.91, 3.87, 1.63, 4.03, 2.46,

2.04, 2.44, 6.09, 2.91)
dataLogit <- data.frame(date, y, x1, x2)

Vintage Forecasts.
x1_forecast_vintageLogit <- Forecast(

origin = as.Date(c("2012-09-30", "2012-12-31", "2013-03-31", "2013-06-30")),
future = as.Date(c("2013-09-30", "2013-12-31", "2014-03-31", "2014-06-30")),
forecast = c(6.34, 4.17, 2.98, 1.84),
realized = c(5.88, 3.34, 2.92, 1.80),
h_ahead = 4L

)

x2_forecast_vintageLogit <- Forecast(
origin = as.Date(c("2012-09-30", "2012-12-31", "2013-03-31", "2013-06-30")),
future = as.Date(c("2013-09-30", "2013-12-31", "2014-03-31", "2014-06-30")),
forecast = c(7.32, 3.22, 2.21, 2.65),
realized = c(6.09, 2.91, 1.68, 2.91),
h_ahead = 4L

)

Forecasting function.
oos_vintage_forc_general(

model_function = function(data) {glm(y ~ x1 + x2, data = data, family = binomial)},
prediction_function = function(model_function, data) {

names(data) <- c("x1", "x2")
as.vector(predict(model_function, data, type = "response"))

},
data = dataLogit,
realized = dataLogit$y,
time_vec = dataLogit$date,
x1_forecast_vintageLogit, x2_forecast_vintageLogit,
estimation_window = NULL

)

origin Get the origin slot of a Forecast object

Description

origin takes a Forecast object and gets the origin vector of the forecast.

Usage

origin(Forecast)

38 origin,Forecast-method

Arguments

Forecast Forecast object.

Value

Vector of origin values stored in the Forecast object.

Examples

Not run:

origin(Forecast)

End(Not run)

origin,Forecast-method

Get the origin slot of a Forecast object

Description

origin takes a Forecast object and gets the origin vector of the forecast.

Usage

S4 method for signature 'Forecast'
origin(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of origin values stored in the Forecast object.

Examples

Not run:

origin(Forecast)

End(Not run)

origin<- 39

origin<- Set the origin slot of a Forecast object

Description

origin takes a Forecast object and sets the origin vector of the forecast.

Usage

origin(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the origin slot of the Forecast.

Value

Forecast object that contains the new origin vector.

Examples

Not run:

origin(Forecast) <- c("2015-01-01", "2015-01-02", "2015-01-03")

End(Not run)

origin<-,Forecast-method

Set origin slot of a Forecast object

Description

origin takes a Forecast object and sets the origin vector of the forecast.

Usage

S4 replacement method for signature 'Forecast'
origin(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the origin slot of the Forecast.

40 performance_weighted_forc

Value

Forecast object that contains the new origin vector.

Examples

Not run:

origin(Forecast) <- c("2015-01-01", "2015-01-02", "2015-01-03")

End(Not run)

performance_weighted_forc

MSE or RMSE weighted forecast

Description

performance_weighted_forc takes two or more forecasts, an evaluation window, and an error
function. For each forecast period, the error function is used to calculate forecast accuracy over
the past eval_window number of periods. The forecast accuracy of each forecast is used to weight
forecasts based on performance. Returns a weighted forecast. Optionally returns the set of weights
used to weight forecasts in each period.

Usage

performance_weighted_forc(
...,
eval_window,
errors = "mse",
return_weights = FALSE

)

Arguments

... Two or more forecasts of class Forecast.

eval_window Integer representing the window over which forecast accuracy is evaluated. Fore-
casts are weighted based on their accuracy over the past eval_window number
of periods.

errors Character, either "mse", "rmse", "mae", or "mape". Selects what forecast accu-
racy function is used to evaluate forecast errors.

return_weights Boolean, selects whether the weights used to weight forecasts in each period are
returned. If TRUE, a data frame of weights is returned to the Global Environ-
ment.

performance_weighted_forc 41

Details

Forecasts are weighted in each period with the following function. The error function used is MSE
or RMSE depending on user selection. This example shows MSE errors.

weight = (1/MSE(forecast))/(1/sum(MSE(forecasts)))

Value

Forecast object that contains the weighted forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

y1_forecast <- Forecast(
origin = as.Date(c("2009-03-31", "2009-06-30", "2009-09-30", "2009-12-31",

"2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30")),

future = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30")),

forecast = c(1.33, 1.36, 1.38, 1.68, 1.60, 1.55, 1.32, 1.22, 1.08, 0.88),
realized = c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99),
h_ahead = 4L

)

y2_forecast <- Forecast(
origin = as.Date(c("2009-03-31", "2009-06-30", "2009-09-30", "2009-12-31",

"2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30")),

future = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30")),

forecast = c(0.70, 0.88, 1.03, 1.05, 1.01, 0.82, 0.95, 1.09, 1.07, 1.06),
realized = c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99),
h_ahead = 4L

)

performance_weighted_forc(
y1_forecast, y2_forecast,
eval_window = 2L,
errors = "mse",
return_weights = FALSE

)

42 R2,Forecast-method

R2 Calculate R2 of a Forecast object

Description

R2 takes a Forecast object and returns the R2 of the forecast. R2 is calculated as: cor(forecast,
realized)^2

Usage

R2(Forecast)

Arguments

Forecast Forecast object.

Value

R2 value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

R2(my_forecast)

R2,Forecast-method Calculate R2 of a Forecast object

Description

R2 takes a Forecast object and returns the R2 of the forecast. R2 is calculated as: cor(forecast,
realized)^2

Usage

S4 method for signature 'Forecast'
R2(Forecast)

random_walk_forc 43

Arguments

Forecast Forecast object.

Value

R2 value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

R2(my_forecast)

random_walk_forc Random walk forecast

Description

random_walk_forc takes a vector of realized values, an integer number of periods ahead to forecast,
and an optional vector of time data associated with the realized values. In each period, the current
period value of the realized_vec series is set as the h_ahead period ahead forecast. Returns a
random walk forecast where the h_ahead period ahead forecast is simply the present value of the
series being forecasted.

Usage

random_walk_forc(realized_vec, h_ahead, time_vec = NULL)

Arguments

realized_vec Vector of realized values. This is the series that is being forecasted.

h_ahead Integer representing the number of periods ahead that is being forecasted.

time_vec Vector of any class that is equal in length to the realized_vec vector.

Value

Forecast object that contains the random walk forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

44 realized

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
data <- data.frame(date, y)

random_walk_forc(
realized_vec = data$y,
h_ahead = 4L,
time_vec = data$date

)

realized Get the realized slot of a realized object

Description

realized takes a Forecast object and gets the realized vector of the forecast.

Usage

realized(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of realized values stored in the Forecast object.

Examples

Not run:

realized(Forecast)

End(Not run)

realized,Forecast-method 45

realized,Forecast-method

Get the realized slot of a realized object

Description

realized takes a Forecast object and gets the realized vector of the forecast.

Usage

S4 method for signature 'Forecast'
realized(Forecast)

Arguments

Forecast Forecast object.

Value

Vector of realized values stored in the Forecast object.

Examples

Not run:

realized(Forecast)

End(Not run)

realized<- Set realized slot of a Forecast object

Description

realized takes a Forecast object and sets the realized vector of the forecast.

Usage

realized(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the realized slot of the Forecast.

46 realized<-,Forecast-method

Value

Forecast object that contains the new realized vector.

Examples

Not run:

realized(Forecast) <- c("2015-03-01", "2015-03-02", "2015-03-03")

End(Not run)

realized<-,Forecast-method

Set realized slot of a Forecast object

Description

realized takes a Forecast object and sets the realized vector of the forecast.

Usage

S4 replacement method for signature 'Forecast'
realized(Forecast) <- value

Arguments

Forecast Forecast object.

value Vector of values assigned to the realized slot of the Forecast.

Value

Forecast object that contains the new realized vector.

Examples

Not run:

realized(Forecast) <- c("2015-03-01", "2015-03-02", "2015-03-03")

End(Not run)

rmse 47

rmse Calculate RMSE of a Forecast object

Description

rmse takes a Forecast object and returns the RMSE of the forecast. RMSE is calculated as:
sqrt(mse)

Usage

rmse(Forecast)

Arguments

Forecast Forecast object.

Value

RMSE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

rmse(my_forecast)

rmse,Forecast-method Calculate RMSE of a Forecast object

Description

rmse takes a Forecast object and returns the RMSE of the forecast. RMSE is calculated as:
sqrt(mse)

Usage

S4 method for signature 'Forecast'
rmse(Forecast)

48 show,Forecast-method

Arguments

Forecast Forecast object.

Value

RMSE value.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

rmse(my_forecast)

show,Forecast-method Print Forecast object to console.

Description

show takes a Forecast object and prints it to console.

Usage

S4 method for signature 'Forecast'
show(object)

Arguments

object Forecast object.

Value

Printed Forecast object.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

)

states_weighted_forc 49

print(my_forecast)

states_weighted_forc States weighted forecast

Description

states_weighted_forc takes two or more forecasts, a data frame, matrix, or array of matching
variables, an optional vector of time data associated with the matching variables, a matching win-
dow size, a matching function, and an error function. For each forecast period, matching_vars are
standardized and the current state of the world is set as the the past matching_window periods of the
matching variables. The current state is compared to all past periods of the matching variables using
the matching function. The current state is matched to the past state that minimizes the matching
function. The forecast error function is then used to compute the accuracy of each forecast over the
matched past state. Forecast weights are computed based on this forecast accuracy, and the current
period forecast is subsequently computed based on the forecast weights. Produces a weighted av-
erage of multiple forecasts based on how each forecast performed during the past state that is most
similar to the current state of the world.

Usage

states_weighted_forc(
...,
matching_vars,
time_vec = NULL,
matching_window,
matching = "euclidean",
errors = "mse",
return_weights = FALSE

)

Arguments

... Two or more forecasts of class Forecast.

matching_vars data frame, array, or matrix of variables used to match the current state of the
world to a past state.

time_vec Vector of any class that is equal in length to the data in matching_vars.
matching_window

Integer representing the window size over which the current state of the world
is matched to a past state. Forecasts are also weighted based on their accuracy
over matching_window periods.

matching Character, "euclidean", "mse", or "rmse". Selects the function used to match the
current state of the world to a past state.

50 states_weighted_forc

errors Character, either "mse", "rmse", "mae", or "mape". Selects what forecast accu-
racy function is used to evaluate forecast errors.

return_weights Boolean, selects whether the weights used to weight forecasts in each period are
returned. If TRUE, a data frame of weights and matched periods is returned to
the Global Environment.

Details

Forecasts are weighted in each period with the function below. The error function used is MSE or
RMSE depending on user selection. This example shows MSE errors.

weight = (1/MSE(forecast))/(1/sum(MSE(forecasts)))

Value

Forecast object that contains the state weighted forecast.

See Also

For a detailed example see the help vignette: vignette("lmForc", package = "lmForc")

Examples

date <- as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31",
"2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30"))

future <- as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31",
"2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31",
"2013-03-31", "2013-06-30"))

y <- c(1.09, 1.71, 1.09, 2.46, 1.78, 1.35, 2.89, 2.11, 2.97, 0.99)
x1 <- c(4.22, 3.86, 4.27, 5.60, 5.11, 4.31, 4.92, 5.80, 6.30, 4.17)
x2 <- c(10.03, 10.49, 10.85, 10.47, 9.09, 10.91, 8.68, 9.91, 7.87, 6.63)

data <- data.frame(date, y, x1, x2)
matching_vars <- data[, c("x1", "x2")]

y1_forecast <- Forecast(
origin = date,
future = future,
forecast = c(1.33, 1.36, 1.38, 1.68, 1.60, 1.55, 1.32, 1.22, 1.08, 0.88),
realized = c(1.78, 1.35, 2.89, 2.11, 2.97, 0.99, 1.31, 1.41, 1.02, 1.05),
h_ahead = 4L

)

y2_forecast <- Forecast(
origin = date,
future = future,
forecast = c(0.70, 0.88, 1.03, 1.05, 1.01, 0.82, 0.95, 1.09, 1.07, 1.06),
realized = c(1.78, 1.35, 2.89, 2.11, 2.97, 0.99, 1.31, 1.41, 1.02, 1.05),
h_ahead = 4L

str,Forecast-method 51

)

states_weighted_forc(
y1_forecast, y2_forecast,
matching_vars = matching_vars,
time_vec = data$date,
matching_window = 2L,
matching = "euclidean",
errors = "mse",
return_weights = FALSE

)

states_weighted_forc(
y1_forecast, y2_forecast,
matching_vars = matching_vars,
time_vec = data$date,
matching_window = 3L,
matching = "rmse",
errors = "rmse"

)

str,Forecast-method Display internal structure structure of Forecast object to the console.

Description

str takes a Forecast object and prints its internal structure to the console.

Usage

S4 method for signature 'Forecast'
str(object)

Arguments

object Forecast object.

Value

Structure of Forecast object.

Examples

my_forecast <- Forecast(
origin = as.Date(c("2010-03-31", "2010-06-30", "2010-09-30", "2010-12-31")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30", "2011-12-31")),
forecast = c(4.21, 4.27, 5.32, 5.11),
realized = c(4.40, 4.45, 4.87, 4.77),
h_ahead = 4L

52 subset_bytime

)

str(my_forecast)

subset_bytime Subset a list of Forecast objects by origin or future values.

Description

Function for subsetting all forecasts in a list of Forecast objects based on origin or future values.

Usage

subset_bytime(forcs, values, slot)

Arguments

forcs List of Forecast objects.

values Single time object or a vector of time objects. The class of the values must
match the class of the origin and future values in the list of Forecast objects.

slot Character representing whether the list of Forecasts will be subset by origin or
future values. Must be either "origin" or "future".

Value

List of subsetted Forecast objects.

Examples

forc1_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-05", "2011-03-10")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.27, 3.36, 4.78, 5.45, 5.12),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forc2_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22", "2011-03-27")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.01, 3.89, 3.31, 4.33, 4.61),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forcs <- list(forc1_1h, forc2_1h)

subset_bytime(forcs, values = as.Date("2010-05-14"), slot = "origin")

subset_forcs 53

subset_bytime(
forcs,
values = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31")),
slot = "future"

)

subset_forcs Subset a list of Forecast objects by index.

Description

General function for subsetting all forecasts in a list of Forecast objects.

Usage

subset_forcs(forcs, index)

Arguments

forcs List of Forecast objects.

index Numeric or logical value or vector.

Value

List of subsetted Forecast objects.

Examples

forc1_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-05", "2011-03-10")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.27, 3.36, 4.78, 5.45, 5.12),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forc2_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22", "2011-03-27")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.01, 3.89, 3.31, 4.33, 4.61),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forcs <- list(forc1_1h, forc2_1h)

subset_forcs(forcs, 1:4)

54 subset_identical

subset_forcs(forcs, origin(forc1_1h) >= as.Date("2010-12-31"))

subset_identical Subset a list of Forecast objects to identical origin or future values.

Description

Function for subsetting all forecasts in a list of Forecast objects to overlapping origin or future
values.

Usage

subset_identical(forcs, slot)

Arguments

forcs List of Forecast objects.

slot Character representing whether the list of Forecasts will be subset to identical
origin or future values. Must be either "origin" or "future".

Value

List of subsetted Forecast objects with identical future or origin values.

Examples

forc1_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-05", "2011-03-10")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.27, 3.36, 4.78, 5.45, 5.12),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forc2_1h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22", "2011-03-27")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.01, 3.89, 3.31, 4.33, 4.61),
realized = c(4.96, 4.17, 4.26, 4.99, 5.38),
h_ahead = 1

)

forcs <- list(forc1_1h, forc2_1h)

subset_identical(forcs, slot = "origin")

transform_byh 55

transform_byh Convert a list of time format Forecast objects to a list of h_ahead for-
mat Forecast objects.

Description

Given a list of forecasts with homogenous origin or future values, converts all forecasts in the list
to h_ahead format.

Usage

transform_byh(forcs, h_aheads)

Arguments

forcs List of Forecast objects.

h_aheads Vector of h_ahead values that is equal in length to the number of Forecast objects
in forcs.

Value

List of Forecast objects in h_ahead format.

Examples

The following forecasts are in time format. Each forecast was made at a
different time and represents a forecast for a number of h_ahead periods
ahead.

forc1_t1 <- Forecast(
origin = as.Date(c("2010-02-17", "2010-02-17", "2010-02-17")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31")),
forecast = c(4.27, 3.77, 3.52),
realized = c(4.96, 4.17, 4.26),
h_ahead = NA

)

forc1_t2 <- Forecast(
origin = as.Date(c("2010-05-14", "2010-05-14", "2010-05-14")),
future = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31")),
forecast = c(3.36, 3.82, 4.22),
realized = c(4.17, 4.26, 4.99),
h_ahead = NA

)

forc1_t3 <- Forecast(
origin = as.Date(c("2010-07-22", "2010-07-22", "2010-07-22")),
future = as.Date(c("2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(4.78, 4.53, 5.03),

56 transform_bytime

realized = c(4.26, 4.99, 5.33),
h_ahead = NA

)

forc1_t4 <- Forecast(
origin = as.Date(c("2010-12-22", "2010-12-22", "2010-12-22")),
future = as.Date(c("2011-03-31", "2011-06-30", "2011-09-30")),
forecast = c(5.45, 4.89, 5.78),
realized = c(4.99, 5.33, 5.21),
h_ahead = NA

)

forcs <- list(forc1_t1, forc1_t2, forc1_t3, forc1_t4)

transform_byh(forcs, h_aheads = c(1, 2, 3))

transform_bytime Convert a list of h_ahead format Forecast objects to a list of time for-
mat Forecast objects.

Description

Given a list of forecasts with different h_ahead values, converts all forecasts in the list to time
format. Transforms a list of Forecast objects that have homogenous h_ahead values to a list of
Forecast objects with homogenous origin or future values.

Usage

transform_bytime(forcs, slot = "future")

Arguments

forcs List of Forecast objects.

slot Character representing whether the list of Forecasts will be converted to a list of
Forecasts with homogenous origin or future values. Must be either "origin" or
"future".

Value

List of Forecast objects in time format.

Examples

The following forecasts are in h_ahead format. All forecasts come from the
same source (forc1) and have the same origin values. However, the forecasts
are for different periods ahead.

forc1_1h <- Forecast(

[,Forecast-method 57

origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-06-30", "2010-09-30", "2010-12-31", "2011-03-31")),
forecast = c(4.27, 3.36, 4.78, 5.45),
realized = c(4.96, 4.17, 4.26, 4.99),
h_ahead = 1

)

forc1_2h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-09-30", "2010-12-31", "2011-03-31", "2011-06-30")),
forecast = c(3.77, 3.82, 4.53, 4.89),
realized = c(4.17, 4.26, 4.99, 5.33),
h_ahead = 2

)

forc1_3h <- Forecast(
origin = as.Date(c("2010-02-17", "2010-05-14", "2010-07-22", "2010-12-22")),
future = as.Date(c("2010-12-31", "2011-03-31", "2011-06-30", "2011-09-30")),
forecast = c(3.52, 4.22, 5.03, 5.78),
realized = c(4.26, 4.99, 5.33, 5.21),
h_ahead = 3

)

forcs <- list(forc1_1h, forc1_2h, forc1_3h)

transform_bytime(forcs, slot = "origin")

[,Forecast-method Subset Forecast object.

Description

[] takes a Forecast object and subsets it.

Usage

S4 method for signature 'Forecast'
x[i, j, ..., drop = TRUE]

Arguments

x ANY

i ANY

j ANY

... ANY

drop ANY

Forecast Forecast object.

58 [,Forecast-method

Value

Subsetted Forecast object.

Index

[,Forecast-method, 57

autoreg_forc, 3

conditional_forc, 4
conditional_forc_general, 6
convert_byh, 7
convert_bytime, 9

forc, 10
forc,Forecast-method, 11
forc2df, 12
forc<-, 12
forc<-,Forecast-method, 13
Forecast, 4–6, 10–13, 14, 15–28, 30, 31, 33,

34, 36–48, 50, 51, 57, 58
Forecast-class, 15
future, 15
future,Forecast-method, 16
future<-, 17
future<-,Forecast-method, 17

h_ahead, 19
h_ahead,Forecast-method, 20
h_ahead<-, 21
h_ahead<-,Forecast-method, 22
historical_average_forc, 18

is_forc, 22
is_forc_general, 23

mae, 24
mae,Forecast-method, 25
mape, 26
mape,Forecast-method, 27
mse, 27
mse,Forecast-method, 28

oos_lag_forc, 29
oos_realized_forc, 30
oos_realized_forc_general, 32

oos_vintage_forc, 33
oos_vintage_forc_general, 35
origin, 37
origin,Forecast-method, 38
origin<-, 39
origin<-,Forecast-method, 39

performance_weighted_forc, 40

R2, 42
R2,Forecast-method, 42
random_walk_forc, 43
realized, 44
realized,Forecast-method, 45
realized<-, 45
realized<-,Forecast-method, 46
rmse, 47
rmse,Forecast-method, 47

show,Forecast-method, 48
states_weighted_forc, 49
str,Forecast-method, 51
subset_bytime, 52
subset_forcs, 53
subset_identical, 54

transform_byh, 55
transform_bytime, 56

59

	autoreg_forc
	conditional_forc
	conditional_forc_general
	convert_byh
	convert_bytime
	forc
	forc,Forecast-method
	forc2df
	forc<-
	forc<-,Forecast-method
	Forecast
	Forecast-class
	future
	future,Forecast-method
	future<-
	future<-,Forecast-method
	historical_average_forc
	h_ahead
	h_ahead,Forecast-method
	h_ahead<-
	h_ahead<-,Forecast-method
	is_forc
	is_forc_general
	mae
	mae,Forecast-method
	mape
	mape,Forecast-method
	mse
	mse,Forecast-method
	oos_lag_forc
	oos_realized_forc
	oos_realized_forc_general
	oos_vintage_forc
	oos_vintage_forc_general
	origin
	origin,Forecast-method
	origin<-
	origin<-,Forecast-method
	performance_weighted_forc
	R2
	R2,Forecast-method
	random_walk_forc
	realized
	realized,Forecast-method
	realized<-
	realized<-,Forecast-method
	rmse
	rmse,Forecast-method
	show,Forecast-method
	states_weighted_forc
	str,Forecast-method
	subset_bytime
	subset_forcs
	subset_identical
	transform_byh
	transform_bytime
	[,Forecast-method
	Index

